If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-53x-336=0
a = 2; b = -53; c = -336;
Δ = b2-4ac
Δ = -532-4·2·(-336)
Δ = 5497
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-53)-\sqrt{5497}}{2*2}=\frac{53-\sqrt{5497}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-53)+\sqrt{5497}}{2*2}=\frac{53+\sqrt{5497}}{4} $
| 75/n=25 | | X+6+3x=2(x+4) | | 2x+3(3x-27)=4 | | 2y-70+120=180 | | (4x+20)=(6x–14) | | -3x5+7=103 | | 2(x+4)+3(x+1)=46 | | 17x-10=15x+10 | | 2y+70-120=180 | | 8m-2=4m | | -6+5x=3x+12 | | 9x-81=2x+2(2x+29 | | 1x+2/3x=180 | | r=7/3 | | 1.44/0.6=y | | 3/4y-7÷2/5y-4=5/4 | | 3(4y+9)+4y=11 | | 8b-4=52 | | -(x+4)x=-11 | | 10b–4=96 | | 0.9/0.3=x | | 4x–3=8 | | 13=7f+2 | | 4^3x=478^x+1 | | 56x=-1/2 | | 2X^2+y^2+8X-8Y-48=0/ | | 2x2=16x=18 | | (2x-14)+(2x-14)=180 | | x14=4035x= | | 1.25/0.25=b | | -35+12x=5(2x+7) | | x=(3x+10)∘ |